Maximal chains of prime ideals of different lengths in unique factorization domains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifting Chains of Prime Ideals

We give an elementary proof that for a ring homomorphism A → B satisfying the property that every ideal in A is contracted from B the following property holds: for every chain of prime ideals p0 ⊂ . . . ⊂ pr in A there exists a chain of prime ideals q0 ⊂ . . . ⊂ qr in B such that qi ∩ A = pi. Mathematical Subject Classification (1991): 13B24. Let A and B be commutative rings and let φ : A → B b...

متن کامل

A note on maximal non-prime ideals

The rings considered in this article are commutative with identity $1neq 0$. By a proper ideal of a ring $R$,  we mean an ideal $I$ of $R$ such that $Ineq R$.  We say that a proper ideal $I$ of a ring $R$ is a  maximal non-prime ideal if $I$ is not a prime ideal of $R$ but any proper ideal $A$ of $R$ with $ Isubseteq A$ and $Ineq A$ is a prime ideal. That is, among all the proper ideals of $R$,...

متن کامل

Unique Factorization of Ideals in OK

Let K be a number field and OK be the ring of algebraic integers. We discuss the unique factorization of elements of OK into irreducibles and its use in solving Diophantine equations. We then proceed to prove the existence of the unique factorization of ideals of OK into prime ideals.

متن کامل

Unique Factorization in Integral Domains

Throughout R is an integral domain unless otherwise specified. Let A and B be sets. We use the notation A ⊆ B to indicate that A is a subset of B and we use the notation A ⊂ B to mean that A is a proper subset of B. The group of elements in R which have a multiplicative inverse (the group of units of R) is denoted R×. Since R has no zero divisors cancellation holds. If a, b, c ∈ R and a 6= 0 th...

متن کامل

a note on maximal non-prime ideals

the rings considered in this article are commutative with identity $1neq 0$. by a proper ideal of a ring $r$,  we mean an ideal $i$ of $r$ such that $ineq r$.  we say that a proper ideal $i$ of a ring $r$ is a  maximal non-prime ideal if $i$ is not a prime ideal of $r$ but any proper ideal $a$ of $r$ with $ isubseteq a$ and $ineq a$ is a prime ideal. that is, among all the proper ideals of $r$,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2019

ISSN: 0035-7596

DOI: 10.1216/rmj-2019-49-3-849